

Mission 10:
Reaction Tester

Student Workbook

[image:]
[image:]

Let’s get physical![image:]

In the last mission, the program used functions, parameters and arguments. For this mission, you tap into the power of CodeX by using the built-in capabilities of its powerful clock.

Go to the Mission 10 Log and fill out the
Pre-Mission preparation.
· In this mission you will use a computer clock to measure time. What are some things you use a timer for?

Mission 10: Reaction Tester
[image:]
How fast is your reaction time?
In this project you will make a device to measure your reaction time. This project will:
· Give a 3-2-1 countdown
· Wait a random delay
· Turn the pixels GREEN
· Measure the reaction time for the button press
· Loop and do the countdown again

Mission 10: Get started
· Go to https://make.firialabs.com/ and log in. [image:]

· Go to Mission 10
[image:]
· Click and start Mission 10.

Objective #1: Milliseconds
This mission will require you to turn on all the pixels the same color.
The code so far turned on a single pixel at a time:
· pixels.set(0, RED)
Using a list, there is an easier way:
· pixels.set([RED, RED, RED, RED])
· Do you notice the list with four items?
· The pixels.set() command needs parenthesis, and the list needs []
· Make sure you use both, in the correct order

Objective #1: Milliseconds
CodeX’s powerful clock can work in milliseconds -- that’s 1,000 times per second![image:]
You will want a random time in milliseconds, so you just have to do a little math.
random.randrange(1, 5) gives a random number between 1 and 4
random.randrange(1000, 5000) gives a random number between 1000 and 4999.
· This gives you a good range of milliseconds, but sleep() uses seconds
· 1000 milliseconds = 1 second, so
· Divide the random number by 1000!

Objective #1: Milliseconds
DO THIS:[image:]
· Start a new file named Reaction_Time
· Import the codex module
· Import the random module
· Import the time module
· Turn all pixels BLACK
· Get a random number using 1000 and 5000 as the range
· Divide the random number by 1000
· Use the random number in sleep()
· Turn all pixels GREEN[image:]

Objective #2: The Countdown[image:]
To make this into a game, you want to give a countdown.
· This will let the player know the game is starting.
· It also indicates when to start the timer.

· Use display.clear() to clear the display
· Use display.print() to countdown from 3 to 2 to 1 (with a sleep delay in between)
· You can scale the number bigger on the display for easy viewing
· display.print(“3”, scale=6)
· sleep(1)

Objective #2: Click to flick[image:]
DO THIS:
· Clear the display & the pixels
· Set all pixels to BLACK
· Countdown from 3 to 2 to 1
· Clear the screen again
· Then continue the rest of your code to get a random number and light all pixels GREEN
[image:]

Objective #3: The Fourth Dimension[image:]
Computers relay on electronic clock circuits
· Clock circuits are used to move through code
· They are used as time delays in the sleep() command
· When you turn on CodeX, its clock is continuously running.

So far you have used the time module for sleep()
· The time module also has a function that returns the current time on the computer clock

If you want to use more than one function from a module, you need to import the entire library, not just one function
· from time import sleep
· This imports only one function
· import time
· This imports the entire library

Objective #3: Fun functions
When you import the entire library, you must reference it when calling one of its functions.
· time.sleep(1)
· time.ticks_ms()
· This returns the current time
· It returns a value, so the value needs to be assigned to a variable
· start_time = time.ticks_ms()

[image:]
DO THIS:
· Go to your Mission Log and answer the question about importing a module
[image:]

Objective #3: Fun functions[image:]
DO THIS:
· Change from
time import sleep to import time
· Change all the sleep(1) commands to time.sleep(1) commands
· HINT: There are four sleep() commands
After the pixels turn GREEN:
· Assign start_time the value from time.ticks_ms()
· Wait until BTN-A was pressed
· Assign end_time the value from time.ticks_ms()
· [image:][image:]Print start_time and end_time

Objective #4: Time Differential[image:]
You have the start_time and end_time.
The reaction time is the difference of the two variables.

· You can just subtract the two:
· reaction_time = end_time - start_time
· OR use another time module function that finds the difference:
· reaction_time = time.ticks_diff(end_time, start_time)

DO THIS:[image:]
· Go to your Mission Log and answer the question about functions in the time module
[image:]

Objective #4: Time Differential
DO THIS:[image:]
· Assign reaction_time the difference between end_time and start_time
· Change the display.print() statements to print the reaction_time instead of start_time and end_time
[image:]

Objective #5: Let’s Keep Playing
Great job so far! The reaction game is fun, but what if you want to play more than once?
· Make the game wait for a button press, and then play again
· You will need an infinite loop with most of the code in it
· You will need to wait for a button press after displaying the reaction time
· You already have code for waiting for a button press, so you can copy and paste it

Objective #5: Let’s Keep Playing[image:]
DO THIS:
· Add an infinite loop after the import statements
· Indent all the code inside the loop
· Add another wait loop at the beginning of the loop[image:]

Objective #6: Reduce Repetition
Take a look at your code. Do you notice a block of code that is repeated?
· You learned in Mission 9 that you can write a function instead of copy-paste or repeating code, you can write a function instead.
· There are two places in your code that wait for BTN-A to be pressed

[image:]

Objective #6: Reduce Repetition
[image:]DO THIS:
· Write a wait_button() function.
· HINT: A function goes near the top of your code
· Delete the code that waits in the while loop.
· Call the wait_button() function two times in the while loop.
[image:][image:]

[image:]Mission Quiz: Quiz Timing
Test your skills by taking the quiz.

Objective #7: No Cheating
Fix a bug. Oh no! Players are pressing the button during the delay and getting ultra fast times.
· The buttons.was_pressed() is always listening
· Even during the random delay
· Solve this problem by resetting the buttons.was_pressed() just before starting the timer
[image:]

DO THIS:
· Reset buttons.was_pressed(BTN_A) just before the pixels turn GREEN
[image:]

Mission Complete

You have completed the tenth mission. [image:]
Do this:
· Read your “Completed Mission” message
· Complete your Mission 10 Log
· Post-Mission Reflection
· Get ready for your next mission!

Wait! Before you go … Clear the CodeX
Go to FILE -- BROWSE FILES
Select the “Clear” file and open it
Run the program to clear the CodeX
Okay. Now you can go.

Page 1[image:]
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image12.png

image1.png

image2.png

